Question

If the angel $$\theta $$ between the line $$\frac{{x + 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{2}$$      and the plane $$2x - y + \sqrt \lambda z + 4 = 0$$     is such that $$\sin \,\theta = \frac{1}{3}$$   then the value of $$\lambda $$ is :

A. $$\frac{5}{3}$$  
B. $$\frac{{ - 3}}{5}$$
C. $$\frac{3}{4}$$
D. $$\frac{{ - 4}}{3}$$
Answer :   $$\frac{5}{3}$$
Solution :
If $$\theta $$ is the angle between line and plane then $$\left( {\frac{\pi }{2} - \theta } \right)$$  is the angle between line and normal to plane given by
$$\eqalign{ & \cos \,\left( {\frac{\pi }{2} - \theta } \right) = \frac{{\left( {\hat i + 2\hat j + 2\hat k} \right).\left( {2\hat i - \hat j + \sqrt \lambda \hat k} \right)}}{{3\sqrt {4 + 1 + \lambda } }} \cr & \cos \left( {\frac{\pi }{2} - \theta } \right) = \frac{{2 - 2 + 2\sqrt \lambda }}{{3 \times \sqrt 5 + \lambda }} \cr & \Rightarrow \sin \,\theta = \frac{{2\sqrt \lambda }}{{3\sqrt 5 + \lambda }} = \frac{1}{3} \cr & \Rightarrow 4\lambda = 5 + \lambda \cr & \Rightarrow \lambda = \frac{5}{3} \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section