Question

If sum of all the solutions of the equation $$8\cos x.\left( {\cos \left( {\frac{\pi }{6} + x} \right).\cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) - 1$$         in $$\left[ {0,\pi } \right]{\text{is }}k\pi ,$$   then $$k$$ is equal to:

A. $$\frac{{13}}{9}$$  
B. $$\frac{{8}}{9}$$
C. $$\frac{{20}}{9}$$
D. $$\frac{{2}}{3}$$
Answer :   $$\frac{{13}}{9}$$
Solution :
$$\eqalign{ & \because \,\,8\cos x.\left( {{{\cos }^2}\frac{\pi }{6} - {{\sin }^2}x - \frac{1}{2}} \right) = 1 \cr & \Rightarrow \,\,8\cos x\left( {\frac{3}{4} - \frac{1}{2} - {{\sin }^2}x} \right) = 1 \cr & \Rightarrow \,\,8\cos x\left( {\frac{1}{4} - \left( {1 - {{\cos }^2}x} \right)} \right) = 1 \cr & \Rightarrow \,\,8\cos x\left( {\frac{1}{4} - 1 + {{\cos }^2}x} \right) = 1 \cr & \Rightarrow \,\,8\cos x\left( {{{\cos }^2}x - \frac{3}{4}} \right) = 1 \cr & \Rightarrow \,\,8\left( {\frac{{4{{\cos }^3}x - 3\cos x}}{4}} \right) = 1 \cr & \Rightarrow \,\,2\left( {4{{\cos }^3}x - 3\cos x} \right) = 1 \cr & \Rightarrow \,\,2\cos 3x = 1 \cr & \Rightarrow \,\,\cos 3x = \frac{1}{2} \cr & \therefore \,\,3x = 2n\pi \pm \frac{\pi }{3},n \in 1 \cr & \Rightarrow \,\,x = \frac{{2n\pi }}{3} \pm \frac{\pi }{9} \cr & {\text{In }}x \in \left[ {0,\pi } \right]:x = \frac{\pi }{9},\frac{{2\pi }}{3} + \frac{\pi }{9},\frac{{2\pi }}{3} - \frac{\pi }{9},{\text{only}} \cr} $$
Sum of all the solutions of the equation
$$\eqalign{ & = \left( {\frac{1}{9} + \frac{2}{3} + \frac{1}{9} + \frac{2}{3} - \frac{1}{9}} \right)\pi \cr & = \frac{{13}}{9}\pi \cr} $$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section