Question

If $$\sin \left( {\pi \cos x} \right) = \cos \left( {\pi \sin x} \right),$$      then what is one of the values of $$\sin 2x \,?$$

A. $$ - \frac{1}{4}$$
B. $$ - \frac{1}{2}$$
C. $$ - \frac{3}{4}$$  
D. $$ - 1$$
Answer :   $$ - \frac{3}{4}$$
Solution :
$$\eqalign{ & {\text{Given that}}:\sin \left( {\pi \cos x} \right) = \cos \left( {\pi \sin x} \right) \cr & {\text{So}},\,\,\cos \left( {\frac{\pi }{2} - \pi \cos x} \right) = \cos \left( {\pi \sin x} \right) \cr & \Rightarrow \frac{\pi }{2} - \pi \cos x = \pi \sin x \cr & \Rightarrow \sin x + \cos x = \frac{1}{2} \cr} $$
Squaring both sides, we get
$$\eqalign{ & {\sin ^2}x + {\cos ^2}x + 2\sin x\cos x = \frac{1}{4} \cr & \Rightarrow \sin 2x = \frac{1}{4} - 1 = - \frac{3}{4} \cr} $$

Releted MCQ Question on
Trigonometry >> Trignometric Equations

Releted Question 1

The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A. no real solution
B. one real solution
C. more than one solution
D. none of these
Releted Question 2

The general solution of the trigonometric equation $$\sin x + \cos x = 1$$    is given by:

A. $$x = 2n\pi ;\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
B. $$x = 2n\pi + \frac{\pi }{2};\,\,n = 0,\,\, \pm 1,\,\, \pm 2\,.....$$
C. $$x = n\pi + {\left( { - 1} \right)^n}\,\,\frac{\pi }{4} - \frac{\pi }{4}$$
D. none of these
Releted Question 3

The general solution of $$\sin \,x - 3\,\sin \,2x\, + \sin \,3x\, = \cos x - 3\,\cos \,\,2x + \cos \,3x$$           is

A. $$n\pi + \frac{\pi }{8}$$
B. $$\frac{{n\pi }}{2} + \frac{\pi }{8}$$
C. $${\left( { - 1} \right)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$$
D. $$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$$
Releted Question 4

Number of solutions of the equation $$\tan x + \sec x = 2\cos x$$     lying in the interval $$\left[ {0,2\pi } \right]$$  is:

A. 0
B. 1
C. 2
D. 3

Practice More Releted MCQ Question on
Trignometric Equations


Practice More MCQ Question on Maths Section