Question

If $$\overrightarrow {{r_1}} = \lambda \hat i + 2\hat j + \hat k,\,\overrightarrow {{r_2}} = \hat i + \left( {2 - \lambda } \right)\hat j + 2\hat k$$         are such that $$\left| {\overrightarrow {{r_1}} } \right| > \left| {\overrightarrow {{r_2}} } \right|,$$   then $$\lambda $$ satisfies which one of the following ?

A. $$\lambda = 0$$  only
B. $$\lambda = 1$$
C. $$\lambda < 1$$
D. $$\lambda > 1$$  
Answer :   $$\lambda > 1$$
Solution :
$$\eqalign{ & {\text{Given, }}\overrightarrow {{r_1}} = \lambda \hat i + 2\hat j + \hat k{\text{ and }}\,\overrightarrow {{r_2}} = \hat i + \left( {2 - \lambda } \right)\hat j + 2\hat k \cr & \therefore \,\left| {\overrightarrow {{r_1}} } \right| > \left| {\overrightarrow {{r_2}} } \right| \cr & \Rightarrow \sqrt {{\lambda ^2} + {{\left( 2 \right)}^2} + {{\left( 1 \right)}^2}} > \sqrt {{{\left( 1 \right)}^2} + {{\left( {2 - \lambda } \right)}^2} + {{\left( 2 \right)}^2}} \cr & \Rightarrow {\lambda ^2} + 4 + 1 > 1 + 4 + {\lambda ^2} - 4\lambda + 4 \cr & \Rightarrow 5 > 9 - 4\lambda \cr & \Rightarrow 4\lambda > 4 \cr & \Rightarrow \lambda > 1 \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section