Question

If $$Q$$ is the image of the point $$P\left( {2,\,3,\,4} \right)$$   under the reflection in the plane $$x - 2y + 5z = 6,$$    then the equation of the line $$PQ$$  is :

A. $$\frac{{x - 2}}{{ - 1}} = \frac{{y - 3}}{2} = \frac{{z - 4}}{5}$$
B. $$\frac{{x - 2}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 4}}{5}$$  
C. $$\frac{{x - 2}}{{ - 1}} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 4}}{5}$$
D. $$\frac{{x - 2}}{1} = \frac{{y - 3}}{2} = \frac{{z - 4}}{5}$$
Answer :   $$\frac{{x - 2}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 4}}{5}$$
Solution :
Let $$Q$$ be the image of the point $$P\left( {2,\,3,\,4} \right)$$   in the plane $$x - 2y + 5z = 6,$$    then $$PQ$$  is normal to the plane.
$$\therefore $$  direction ratios of $$PQ$$  are $$\left\langle {1,\, - 2,\,5} \right\rangle $$
Since $$PQ$$  passes through $$P\left( {2,\,3,\,4} \right)$$   and has direction ratios $${1,\, - 2,\,5}$$
$$\therefore $$  Equation of $$PQ$$  is $$\frac{{x - 2}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 4}}{5}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section