Question

If $$\pi \left( n \right)$$  denotes product of all binomial coefficients in $${\left( {1 + x} \right)^n},$$  then ratio of $$\pi \left( {2002} \right)$$  to $$\pi \left( {2001} \right)$$  is

A. $$2002$$
B. $$\frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}}$$  
C. $$\frac{{{{\left( {2001} \right)}^{2002}}}}{{\left( {2002} \right)!}}$$
D. $$2001$$
Answer :   $$\frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}}$$
Solution :
$$\eqalign{ & \frac{{\pi \left( n \right)}}{{\pi \left( {n + 1} \right)}} = \frac{{^n{C_0} \cdot {\,^n}{C_1} \cdot {\,^n}{C_2}{{.....}^n}{C_n}}}{{^{n + 1}{C_0} \cdot {\,^{n + 1}}{C_1} \cdot {\,^{n + 1}}{C_2}{{.....}^{n + 1}}{C_{n + 1}}}} \cr & = \frac{1}{{^{n + 1}{C_0}}}\left( {\frac{{^n{C_0}}}{{^{n + 1}{C_1}}}} \right)\left( {\frac{{^n{C_1}}}{{^{n + 1}{C_2}}}} \right).....\left( {\frac{{^n{C_n}}}{{^{n + 1}{C_{n + 1}}}}} \right) \cr & = \frac{1}{1}\left( {\frac{1}{{n + 1}}} \right)\left( {\frac{2}{{n + 1}}} \right).....\left( {\frac{{n + 1}}{{n + 1}}} \right)\left[ {\because \frac{{^n{C_r}}}{{^{n + 1}{C_{r + 1}}}} = \frac{{r + 1}}{{n + 1}}} \right] \cr & = \frac{{\left( {n + 1} \right)!}}{{{{\left( {n + 1} \right)}^{n + 1}}}} = \frac{{n!}}{{{{\left( {n + 1} \right)}^n}}} \cr & \therefore \frac{{\pi \left( {2002} \right)}}{{\pi \left( {2001} \right)}} = \frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section