Question

If $$\phi \left( x \right) = \int_x^{{x^2}} {\left( {t - 1} \right)dt,\,1 \leqslant x \leqslant 2,} $$        then the greatest value of $$\phi \left( x \right)$$  is :

A. 2
B. 4  
C. 8
D. none of these
Answer :   4
Solution :
$$\eqalign{ & \phi \left( x \right) = \int_0^{{x^2}} {\left( {t - 1} \right)dt} - \int_0^x {\left( {t - 1} \right)dt} \cr & \therefore \phi '\left( x \right) = \left( {{x^2} - 1} \right).2x - \left( {x - 1} \right) = 2{x^3} - 3x + 1 \cr & \therefore \phi '\left( x \right) = \left( {x - 1} \right)\left( {2{x^2} + 2x - 1} \right) \cr & = 2\left( {x - 1} \right)\left( {{x^2} + x - \frac{1}{2}} \right) \cr & = 2\left( {x - 1} \right)\left\{ {{{\left( {x + \frac{1}{2}} \right)}^2} - \frac{3}{4}} \right\} \cr} $$
In $$1 \leqslant x \leqslant 2,\,\phi '\left( x \right) \geqslant 0.$$      So, $$\phi \left( x \right)$$  is m.i. in [1, 2]. Hence, $$\phi \left( 2 \right)$$  is the greatest value. Now, $$\phi \left( 2 \right) = \int_2^4 {\left( {t - 1} \right)dt} = \left[ {\frac{{{t^2}}}{2} - t} \right]_2^4 = \left( {8 - 4} \right) - \left( {2 - 2} \right) = 4\,$$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section