Question

If $$P \equiv \left( {x,\,y} \right),\,{F_1} \equiv \left( {3,\,0} \right),\,{F_2} \equiv \left( { - 3,\,0} \right)$$        and $$16{x^2} + 25{y^2} = 400,$$     then $$P{F_1} + P{F_2}$$   equals :

A. $$8$$
B. $$6$$
C. $$10$$  
D. $$12$$
Answer :   $$10$$
Solution :
The ellipse can be written as, $$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$$
Here $${a^2} = 25,\,{b^2} = 16,$$
$$\eqalign{ & {\text{But }}{b^2} = {a^2}\left( {1 - {e^2}} \right) \cr & \Rightarrow \frac{{16}}{{25}} = 1 - {e^2} \cr & \Rightarrow {e^2} = 1 - \frac{{16}}{{25}} = \frac{9}{{25}} \cr & \Rightarrow e = \frac{3}{5} \cr} $$
Foci of the ellipse are $$\left( { \pm ae,\,0} \right) = \left( { \pm 3,\,0} \right),$$     i.e., $${F_1}$$ and $${F_2}$$
$$\therefore $$  We have $$P{F_1} + P{F_2} = 2a = 10$$     for every point $$P$$ on the ellipse.

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section