Question

If $$p$$ is the length of the perpendicular from the focus $$S$$ of the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$    to a tangent at a point $$P$$ on the ellipse, then $$\frac{{2a}}{{SP}} - 1 = ?$$

A. $$\frac{{{a^2}}}{{{p^2}}}$$
B. $$\frac{{{b^2}}}{{{p^2}}}$$  
C. $${p^2}$$
D. $$\frac{{{a^2} + {b^2}}}{{{p^2}}}$$
Answer :   $$\frac{{{b^2}}}{{{p^2}}}$$
Solution :
Let the point $$P$$ be $$\left( {a\,\cos \,\theta ,\,b\,\sin \,\theta } \right)$$
The tangent at $$P$$ is $$\frac{x}{a}\cos \,\theta + \frac{y}{b}\sin \,\theta = 1......\left( {\text{i}} \right)$$
The perpendicular distance $$p$$ of $$S\left( {ae,\,0} \right)$$   form $$\left( {\text{i}} \right)$$ is given by
$$\eqalign{ & {p^2} = \frac{{{{\left( {e\,\cos \,\theta - 1} \right)}^2}}}{{\frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}}}} \cr & \Rightarrow \frac{1}{{{p^2}}} = \frac{{\frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}}}}{{{{\left( {e\,\cos \,\theta - 1} \right)}^2}}} \cr & \Rightarrow \frac{{{b^2}}}{{{p^2}}} = \frac{{\frac{{{b^2}}}{{{a^2}}}{{\cos }^2}\theta + 1 - {{\cos }^2}\theta }}{{{{\left( {e\,\cos \,\theta - 1} \right)}^2}}} \cr & \Rightarrow \frac{{{b^2}}}{{{p^2}}} = \frac{{\left( {\frac{{{b^2}}}{{{a^2}}} - 1} \right){{\cos }^2}\theta + 1}}{{{{\left( {e\,\cos \,\theta - 1} \right)}^2}}} \cr & \Rightarrow \frac{{{b^2}}}{{{p^2}}} = \frac{{1 - {e^2}{{\cos }^2}\theta }}{{{{\left( {e\,\cos \,\theta - 1} \right)}^2}}} \cr & \Rightarrow \frac{{{b^2}}}{{{p^2}}} = \frac{{1 + e\,\cos \,\theta }}{{1 - e\,\cos \,\theta }} \cr & {\text{Now, }}SP = a\left( {1 - e\,\cos \,\theta } \right) \cr & \therefore \,\frac{{2a}}{{SP}} - 1 = \frac{{2a}}{{a\left( {1 - e\,\cos \,\theta } \right)}} - 1 = \frac{{1 + e\,\cos \,\theta }}{{1 - e\,\cos \,\theta }} = \frac{{{b^2}}}{{{p^2}}} \cr} $$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section