Question
      
        If $$\overrightarrow p $$ and $$\overrightarrow q $$ are two unit vectors inclined at an angle $$\alpha $$ to each other then $$\left| {\overrightarrow p  + \overrightarrow q } \right| < 1$$   if :      
       A.
        $$\frac{{2\pi }}{3} < \alpha  < \frac{{4\pi }}{3}$$                 
              
       B.
        $$\frac{{4\pi }}{3} < \alpha  < 2\pi $$              
       C.
        $$0 < \alpha  < \frac{\pi }{3}$$              
       D.
        $$\alpha  = \frac{\pi }{2}$$              
            
                Answer :  
        $$\frac{{2\pi }}{3} < \alpha  < \frac{{4\pi }}{3}$$      
             Solution :
        $$\eqalign{
  & \left| {\overrightarrow p  + \overrightarrow q } \right| = \left( {\overrightarrow p  + \overrightarrow q } \right).\left( {\overrightarrow p  + \overrightarrow q } \right)  \cr 
  &  = {\left| {\overrightarrow p } \right|^2} + {\left| {\overrightarrow q } \right|^2} + 2\overrightarrow p .\overrightarrow q   \cr 
  &  = 2 + 2\,\cos \,\alpha ,  \cr 
  & {\text{where }}\alpha {\text{ is the angle between}}\overrightarrow p {\text{ and }}\overrightarrow q   \cr 
  &  = 2\left( {1 + \cos \,\alpha } \right)  \cr 
  &  = 4\,{\cos ^2}\left( {\frac{\alpha }{2}} \right)  \cr 
  & {\left| {\overrightarrow p  + \overrightarrow q } \right|^2} < 1  \cr 
  &  \Rightarrow \left( {4\,{{\cos }^2}\frac{\alpha }{2} - 1} \right) < 0  \cr 
  &  \Rightarrow \left( {2\,\cos \frac{\alpha }{2} - 1} \right)\left( {2\,\cos \frac{\alpha }{2} + 1} \right) < 0,\, - \frac{1}{2} < \cos \frac{\alpha }{2} < \frac{1}{2}  \cr 
  &  \Rightarrow \frac{\pi }{3} < \frac{\alpha }{2} < \frac{{2\pi }}{3}  \cr 
  &  \Rightarrow \frac{{2\pi }}{3} < \alpha  < \frac{{4\pi }}{3} \cr} $$