Question

If $$P$$ and $$Q$$ are the points of intersection of the circles $${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$$       and $${x^2} + {y^2} + 2x + 2y - {p^2} = 0$$       then there is a circle passing through $$P, \,Q$$  and $$\left( {1,\,1} \right)$$  for :

A. all except one value of $$p$$  
B. all except two values of $$p$$
C. exactly one value of $$p$$
D. all values of $$p$$
Answer :   all except one value of $$p$$
Solution :
The given circles are
$$\eqalign{ & {S_1} \equiv {x^2} + {y^2} + 3x + 7y + 2p - 5 = 0.....(1) \cr & {S_2} \equiv {x^2} + {y^2} + 2x + 2y - {p^2} = 0.....(2) \cr} $$
$$\therefore $$ Equation of common chord $$PQ$$  is $${S_1} - {S_2} = 0$$
$$ \Rightarrow L \equiv x + 5y + {p^2} + 2p - 5 = 0$$
$$ \Rightarrow $$ Equation of circle passing through $$P$$ and $$Q$$ is $${S_1} + \lambda \,{\text{L}} = 0$$
$$ \Rightarrow \left( {{x^2} + {y^2} + 3x + 7y + 2p - 5} \right) + \lambda \left( {x + 5y + {p^2} + 2p - 5} \right) = 0$$
As it passes through (1, 1), therefore
$$ \Rightarrow \left( {7 + 2p} \right) + \lambda \left( {2p + {p^2} + 1} \right) = 0$$
$$ \Rightarrow \lambda = - \frac{{2p + 7}}{{{{\left( {p + 1} \right)}^2}}},$$       which does not exist for $$p=-1$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section