Question

If $$\overrightarrow p $$ and $$\overrightarrow q $$ are non-collinear unit vectors and $$\left| {\overrightarrow p + \overrightarrow q } \right| = \sqrt 3 ,$$    then $$\left( {2\overrightarrow p - 3\overrightarrow q } \right).\left( {3\overrightarrow p + \overrightarrow q } \right)$$      is equal to :

A. $$0$$
B. $$\frac{1}{3}$$
C. $$ - \frac{1}{3}$$
D. $$ - \frac{1}{2}$$  
Answer :   $$ - \frac{1}{2}$$
Solution :
$$\left| {\overrightarrow p + \overrightarrow q } \right| = \sqrt 3 \Rightarrow \overrightarrow {{p^2}} + \overrightarrow {{q^2}} + 2\overrightarrow p \overrightarrow q = 3$$
Since $$\overrightarrow p $$ and $$\overrightarrow q $$ are unit vectors
$$\eqalign{ & {\text{So, }}1 + 1 + 2pq = 3 \cr & \Rightarrow 2pq = 1 \cr & \Rightarrow pq = \frac{1}{2} \cr & \left( {2\overrightarrow p - 3\overrightarrow q } \right)\left( {3\overrightarrow p + \overrightarrow q } \right) = 6\overrightarrow {{p^2}} + 2\overrightarrow p \overrightarrow q - 9\overrightarrow q \overrightarrow p - 3\overrightarrow {{q^2}} = \frac{{ - 1}}{2} \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section