Question

If $$OABC$$   is a tetrahedron where $$O$$ is the origin and $$A,\,B,\,C$$   are three other vertices with position vectors $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ respectively, then the centre of sphere circumscribing the tetrahedron is given by the position vector :

A. $$\frac{{{a^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {b^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$  
B. $$\frac{{{b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {a^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
C. $$\frac{{{b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {a^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
D. $$\frac{{{a^2}\left( {\overrightarrow a \times \overrightarrow b } \right) + {b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {c^2}\left( {\overrightarrow c \times \overrightarrow a } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
Answer :   $$\frac{{{a^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {b^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
Solution :
If the centre $$'P'$$ is with position vector $$\overrightarrow r ,$$
Then $$\overrightarrow a - \overrightarrow r = \overrightarrow {PA} ,\,\overrightarrow b - \overrightarrow r = \overrightarrow {PB} ,\,\overrightarrow c - \overrightarrow r = \overrightarrow {PC} ,$$
Where $$\left| {\overrightarrow {PA} } \right| = \left| {\overrightarrow {PB} } \right| = \left| {\overrightarrow {PC} } \right| = \left| {\overrightarrow {OP} } \right| = \left| {\overrightarrow r } \right|$$
Three Dimensional Geometry mcq solution image
$$\eqalign{ & {\text{Consider }}\left| {\overrightarrow a - \overrightarrow r } \right| = \left| {\overrightarrow r } \right| \cr & \Rightarrow \left( {\overrightarrow a - \overrightarrow r } \right).\left( {\overrightarrow a - \overrightarrow r } \right) = \overrightarrow r .\overrightarrow r \cr & \Rightarrow {a^2} - 2\overrightarrow a .\overrightarrow r + {r^2} = {r^2} \cr & \Rightarrow {a^2} = 2\overrightarrow a .\overrightarrow r \cr & {\text{Similarly, }}{b^2} = 2\overrightarrow b .\overrightarrow r {\text{ and }}{c^2} = 2\overrightarrow c .\overrightarrow r \cr & {\text{Since, }}\left( {\overrightarrow b \times \overrightarrow c } \right),\,\left( {\overrightarrow c \times \overrightarrow a } \right){\text{ and }}\left( {\overrightarrow a \times \overrightarrow b } \right){\text{ are non - coplanar,}} \cr & {\text{then }}\overrightarrow r = x\left( {\overrightarrow b \times \overrightarrow c } \right) + y\left( {\overrightarrow c \times \overrightarrow a } \right) + z\left( {\overrightarrow a \times \overrightarrow b } \right) \cr & \Rightarrow \overrightarrow a .\overrightarrow r = x\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) + y.0 + z.0 \cr & \Rightarrow \overrightarrow a .\overrightarrow r = x\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] \cr & \Rightarrow x = \frac{{\overrightarrow a .\overrightarrow r }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr & \Rightarrow x = \frac{{{a^2}}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr & {\text{Similarly, }}y = \frac{{{b^2}}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{\text{ and }}z = \frac{{{c^2}}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr & {\text{Therefore, }}\overrightarrow r = \frac{{{a^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {b^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section