Question

If $${n_1},{n_2}$$  are positive integers then $${\left( {1 + i} \right)^{{n_1}}} + {\left( {1 + {i^3}} \right)^{{n_1}}} + {\left( {1 + {i^5}} \right)^{{n_2}}} + {\left( {1 + {i^7}} \right)^{{n_2}}}$$         is a real number if and only if

A. $${n_1} = {n_2} + 1$$
B. $${n_1} + 1 = {n_2}$$
C. $${n_1} = {n_2}$$
D. $${n_1},{n_2}$$  are any two positive integers  
Answer :   $${n_1},{n_2}$$  are any two positive integers
Solution :
Expression $$ = {\left( {1 + i} \right)^{{n_1}}} + {\left( {1 - i} \right)^{{n_1}}} + {\left( {1 + i} \right)^{{n_2}}} + {\left( {1 - i} \right)^{{n_2}}}$$
$$\eqalign{ & = {2^{\frac{{{n_1}}}{2}}}{\left( {\frac{1}{{\sqrt 2 }} + i\frac{1}{{\sqrt 2 }}} \right)^{{n_1}}} + {2^{\frac{{{n_1}}}{2}}}{\left( {\frac{1}{{\sqrt 2 }} - i\frac{1}{{\sqrt 2 }}} \right)^{{n_1}}} + {2^{\frac{{{n_2}}}{2}}}{\left( {\frac{1}{{\sqrt 2 }} + i\frac{1}{{\sqrt 2 }}} \right)^{{n_2}}} + {2^{\frac{{{n_2}}}{2}}}{\left( {\frac{1}{{\sqrt 2 }} - i\frac{1}{{\sqrt 2 }}} \right)^{{n_2}}} \cr & = {2^{\frac{{{n_1}}}{2}}}\left\{ {{{\left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)}^{{n_1}}} + {{\left( {\cos \frac{\pi }{4} - i\sin \frac{\pi }{4}} \right)}^{{n_1}}}} \right\} + {2^{\frac{{{n_2}}}{2}}}\left\{ {{{\left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)}^{{n_2}}} + {{\left( {\cos \frac{\pi }{4} - i\sin \frac{\pi }{4}} \right)}^{{n_2}}}} \right\} \cr & = {2^{\frac{{{n_1}}}{2}}}\left\{ {\cos \frac{{{n_1}\pi }}{4} + i\sin \frac{{{n_1}\pi }}{4} + \cos \frac{{{n_1}\pi }}{4} - i\sin \frac{{{n_1}\pi }}{4}} \right\} + {2^{\frac{{{n_2}}}{2}}}\left\{ {\cos \frac{{{n_2}\pi }}{4} + i\sin \frac{{{n_2}\pi }}{4} + \cos \frac{{{n_2}\pi }}{4} - i\sin \frac{{{n_2}\pi }}{4}} \right\},\,\,{\text{if }}{n_1},{n_2}\,{\text{are integers}} \cr & = {2^{\frac{{{n_1}}}{2}}} \cdot 2\cos \frac{{{n_1}\pi }}{4} + {2^{\frac{{{n_2}}}{2}}} \cdot 2\cos \frac{{{n_2}\pi }}{4} = {\text{real}}{\text{.}} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section