Question

If $$'n'$$ is positive integer and three consecutive coefficient in the expansion of $${\left( {1 + x} \right)^n}$$  are in the ratio $$6 : 33 : 110$$   then n is equal to :

A. 9
B. 6
C. 12  
D. 16
Answer :   12
Solution :
Let the consecutive coefficient of $${\left( {1 + x} \right)^n}$$  are $$^n{C_{r - 1}},{\,^n}{C_r},{\,^n}{C_{r + 1}}$$
From the given condition, $$^n{C_{r - 1}}:{\,^n}{C_r}:{\,^n}{C_{r + 1}} = 6:33:110$$
Now, $$^n{C_{r - 1}}:{\,^n}{C_r}= 6:33$$
$$\eqalign{ & \Rightarrow \,\frac{{n!}}{{\left( {r - 1} \right)!\left( {n - r + 1} \right)!}} \times \frac{{r!\left( {n - r} \right)!}}{{n!}} = \frac{6}{{33}} \cr & \Rightarrow \,\frac{r}{{n - r + 1}} = \frac{2}{{11}} \cr & \Rightarrow \,11r = 2n - 2r + 2 \cr & \Rightarrow \,2n - 13r + 2 = 0\,\,\,.....\left( {\text{i}} \right) \cr & {\text{and}}{{\text{ }}^n}{C_r}:{\,^n}{C_{r + 1}} = 33\,:\,110 \cr & \Rightarrow \,\frac{{n!}}{{r!\left( {n - r} \right)!}} \times \frac{{\left( {r + 1} \right)!\left( {n - r - 1} \right)!}}{{n!}} = \frac{{33}}{{110}} = \frac{3}{{10}} \cr & \Rightarrow \,\frac{{\left( {r + 1} \right)}}{{n - r}} = \frac{3}{{10}} \cr & \Rightarrow \,3n - 13r - 10 = 0\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Solving (i) & (ii), we get $$n = 12$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section