Question

If $$n$$ is a positive integer, then $${\left( {\sqrt 3 + 1} \right)^{2n}} - {\left( {\sqrt 3 - 1} \right)^{2n}}$$     is:

A. an irrational number  
B. an odd positive integer
C. an even positive integer
D. a rational number other than positive integers
Answer :   an irrational number
Solution :
$$\eqalign{ & {\left( {\sqrt 3 + 1} \right)^{2n}} - {\left( {\sqrt 3 - 1} \right)^{2n}} \cr & = {\left[ {{{\left( {\sqrt 3 + 1} \right)}^2}} \right]^n} - {\left[ {{{\left( {\sqrt 3 - 1} \right)}^2}} \right]^n} \cr & = {\left( {4 + 2\sqrt 3 } \right)^n} - {\left( {4 - 2\sqrt 3 } \right)^n} \cr & = {2^n}\left[ {{{\left( {2 + \sqrt 3 } \right)}^n} - {{\left( {2 - \sqrt 3 } \right)}^n}} \right] \cr & = {2^n} \times 2\left[ {^n{C_1}{2^{n - 1}}\sqrt 3 + {\,^n}{C_3}{{.2}^{n - 3}}3\sqrt 3 + .....} \right] \cr & = {2^{n + 1}}\sqrt 3 \left[ {^n{C_1}{{.2}^{n - 1}} + {\,^n}{C_3}{2^{n - 3}}.3 + .....} \right] \cr & = \sqrt 3 \times \,{\text{Some integer}} \cr & \therefore \,\,{\text{irrational number}} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section