Question

If $$n\left( A \right) = 115,\,n\left( B \right) = 326,\,n\left( {A - B} \right) = 47,$$         then what is $$n\left( {A \cup B} \right)$$   equal to ?

A. 373  
B. 165
C. 370
D. 394
Answer :   373
Solution :
We know, for two sets $$A$$ and $$B$$
$$\eqalign{ & A - B = A - \left( {A \cap B} \right) \cr & \therefore \,n\left( {A - B} \right) = n\left( A \right) - n\left( {A \cap B} \right) \cr & {\text{Given, }}n\left( A \right) = 115,\,n\left( B \right) = 326{\text{ and }}n\left( {A - B} \right) = 47 \cr & \Rightarrow \,47 = 115 - n\left( {A \cap B} \right) \cr & \Rightarrow \,n\left( {A \cap B} \right) = 68 \cr & {\text{Consider }}n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right) \cr & = 115 + 326 - 68 = 373 \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section