Question

If $$^{n - 1}{C_r} = \left( {{k^2} - 3} \right){\,^n}{C_{r + 1}},$$     then $$k \in $$

A. $$\left( { - \infty , - 2} \right]$$
B. $$\left[ {2,\infty } \right)$$
C. $$\left[ { - \sqrt 3 ,\sqrt 3 } \right]$$
D. $$\left( {\sqrt 3 ,2} \right]$$  
Answer :   $$\left( {\sqrt 3 ,2} \right]$$
Solution :
$$\eqalign{ & ^{n - 1}{C_r} = {\,^n}{C_{r + 1}}\left( {{k^2} - 3} \right) \cr & \Rightarrow \,\,{k^2} - 3 = \frac{{^{n - 1}{C_r}}}{{^n{C_{r + 1}}}} = \frac{{r + 1}}{n} \cr & {\text{Since }}0 \leqslant r \leqslant n - 1 \cr & \Rightarrow \,\,1 \leqslant r + 1 \leqslant n \cr & \Rightarrow \,\,\frac{1}{n} \leqslant \frac{{r + 1}}{n} \leqslant 1 \cr & \Rightarrow \,\,\frac{1}{n} \leqslant {k^2} - 3 \leqslant 1 \cr & \Rightarrow \,\,3 + \frac{1}{n} \leqslant {k^2} \leqslant 4 \cr & \Rightarrow \,\,\sqrt {3 + \frac{1}{n}} \leqslant k \leqslant 2 \cr & {\text{as }}\,n \to \infty \cr & \Rightarrow \,\,\sqrt 3 < k \leqslant 2 \cr & \Rightarrow \,\,k \in \left( {\sqrt 3 ,2} \right] \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section