Question
If $$m$$ is the A.M. of two distinct real numbers $$l$$ and $$n ( l, n > 1)$$ and $${{{G}}_1}{{,}}{{{G}}_2}$$ and $${{{G}}_3}$$ are three geometric means between $$l$$ and $$n,$$ then $${{G}}_1^4 + {{2G}}_2^4{{ + }}{{G}}_3^4$$ equals:
A.
$$4\,lm{n^2}$$
B.
$$4\,{l^2}{m^2}{n^2}$$
C.
$$4\,{l^2}mn$$
D.
$$4\,l{m^2}n$$
Answer :
$$4\,l{m^2}n$$
Solution :
$$\eqalign{
& m = \frac{{l + n}}{2}{\text{ and common ratio of G}}{\text{.P}}{\text{. }} = r = {\left( {\frac{n}{l}} \right)^{\frac{1}{4}}} \cr
& \therefore \,\,{{{G}}_1} = {l^{\frac{3}{4}}}{n^{\frac{1}{4}}},{{{G}}_2} = {l^{\frac{1}{2}}}{n^{\frac{1}{2}}},{{{G}}_3} = {l^{\frac{1}{4}}}{n^{\frac{3}{4}}} \cr
& \,\,\,\,{{G}}_1^4 + 2{{G}}_2^4 + {{G}}_3^4 = {l^3}n + 2{l^2}{n^2} + l{n^3} \cr
& = ln{\left( {l + n} \right)^2} \cr
& = \,ln \times 2{m^2} \cr
& = 4l{m^2}n \cr} $$