Question
If $$m = {\text{cosec}}\,\theta - \sin \theta $$ and $$n = \sec \theta - \cos \theta ,$$ then $${m^{\frac{2}{3}}} + {n^{\frac{2}{3}}} = $$
A.
$${\left( {mn} \right)^{ - \frac{2}{3}}}$$
B.
$${\left( {mn} \right)^{ \frac{2}{3}}}$$
C.
$${\left( {mn} \right)^{ - \frac{1}{3}}}$$
D.
$${\left( {mn} \right)^{ \frac{1}{3}}}$$
Answer :
$${\left( {mn} \right)^{ - \frac{2}{3}}}$$
Solution :
We have,
$$\eqalign{
& mn\, = \left( {{\text{cosec}}\,\theta - \sin \,\theta } \right)\left( {\sec \,\theta - \cos \,\theta } \right) \cr
& = \,\left( {\frac{1}{{\sin \,\theta }} - \sin \,\theta } \right)\left( {\frac{1}{{\cos \,\theta }} - \cos \,\theta } \right) \cr
& = \,\frac{{1 - {{\sin }^2}\theta }}{{\sin \,\theta }} \times \frac{{1 - {{\cos }^2}\theta }}{{\cos \,\theta }} \cr
& = \,\frac{{{{\cos }^2}\theta }}{{\sin \,\theta }} \times \frac{{{{\sin }^2}\theta }}{{\cos \,\theta }} = \sin \,\theta \cdot \cos \,\theta \cr
& \therefore {m^{\frac{2}{3}}} + {n^{\frac{2}{3}}} = {\left( {\frac{{{{\cos }^2}\theta }}{{\sin \,\theta }}} \right)^{\frac{2}{3}}} + {\left( {\frac{{{{\sin }^2}\theta }}{{\cos \,\theta }}} \right)^{\frac{2}{3}}} \cr
& = \frac{{{{\cos }^{\frac{4}{3}}}\theta }}{{{{\sin }^{\frac{2}{3}}}\theta }} + \frac{{{{\sin }^{\frac{4}{3}}}\theta }}{{{{\cos }^{\frac{2}{3}}}\theta }} = \frac{{{{\cos }^2}\theta + {{\sin }^2}\theta }}{{{{\left( {\sin \,\theta \cdot \cos \,\theta } \right)}^{\frac{2}{3}}}}} \cr
& = \,\frac{1}{{{{\left( {mn} \right)}^{\frac{2}{3}}}}} = {\left( {mn} \right)^{ - \frac{2}{3}}} \cr} $$