Question

If $$l_r^2 + m_r^2 + n_r^2 = 1;r = 1,2,3$$      and $${l_r}{l_s} + {m_r}{m_s} + {n_r}{n_s} = 0;r \ne s,r = 1,2,3;s = 1,2,3,$$           then the value of \[\left| {\begin{array}{*{20}{c}} {{l_1}}&{{m_1}}&{{n_1}}\\ {{l_2}}&{{m_2}}&{{n_2}}\\ {{l_3}}&{{m_3}}&{{n_3}} \end{array}} \right|\]   is

A. $$0$$
B. $$ \pm 1$$  
C. $$2$$
D. None of these
Answer :   $$ \pm 1$$
Solution :
\[\begin{array}{l} {D^2} = \left| {\begin{array}{*{20}{c}} {{l_1}}&{{m_1}}&{{n_1}}\\ {{l_2}}&{{m_2}}&{{n_2}}\\ {{l_3}}&{{m_3}}&{{n_3}} \end{array}} \right|\,\,\left| {\begin{array}{*{20}{c}} {{l_1}}&{{m_1}}&{{n_1}}\\ {{l_2}}&{{m_2}}&{{n_2}}\\ {{l_3}}&{{m_3}}&{{n_3}} \end{array}} \right|\\ = \,\left| {\begin{array}{*{20}{c}} {{\rm{ }}l_1^2 + m_1^2 + n_1^2}&{{l_2}{l_1} + {m_2}{m_1} + {n_2}{n_1}}&{{l_1}{l_3} + {m_1}{m_3} + {n_1}{n_3}}\\ {{\rm{ }}{l_2}{l_1} + {m_2}{m_1} + {n_2}{n_1}}&{l_2^2 + m_2^2 + n_2^2}&{{l_2}{l_1} + {m_2}{m_3} + {n_2}{n_3}}\\ {{l_1}{l_3} + {m_1}{m_3} + {n_1}{n_3}}&{{\rm{ }}{l_2}{l_3} + {m_2}{m_3} + {n_2}{n_3}}&{l_3^2 + m_3^2 + n_3^2} \end{array}} \right|\\ = \,\left| {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right| = 1 \end{array}\]
$$ \Rightarrow \,D = \pm 1$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section