Question

If $${\log _e}5,{\log _e}\left( {{5^x} - 1} \right){\text{and }}{\log _e}\left( {{5^x} - \frac{{11}}{5}} \right)$$       are in A.P. then the values of $$x$$ are

A. $${\log _5}4{\text{ and}}\,\,{\log _5}3$$  
B. $${\log _3}4{\text{ and}}\,\,{\log _4}3$$
C. $${\log _3}4{\text{ and}}\,\,{\log _3}5$$
D. $${\log _5}6{\text{ and}}\,\,{\log _5}7$$
Answer :   $${\log _5}4{\text{ and}}\,\,{\log _5}3$$
Solution :
$$\eqalign{ & {\log _e}5 + {\log _e}\left( {{5^x} - \frac{{11}}{5}} \right) = 2{\log _e}\left( {{5^x} - 1} \right) \cr & \Rightarrow {5^{x + 1}} - 11 = {5^{2x}} + 1 - 2 \times {5^x} \cr & \Rightarrow {5^{2x}} - {7.5^x} + 12 = 0 \cr & {\text{Let, }}{5^x} = t,{t^2} - 7t + 12 = 0 \cr & \Rightarrow t = 4,3 \cr & {5^x} = 4 \cr & {\log _5}{5^x} = {\log _5}4 \cr & x = {\log _5}4 \cr & {5^x} = 3 \cr & {\log _5}{5^x} = {\log _5}3 \cr & x = {\log _5}3 \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section