Question

If $${\log _{10}}2,{\log _{10}}\left( {{2^x} - 1} \right),{\log _{10}}\left( {{2^x} + 3} \right)$$       are three consecutive terms of an A.P., then which one of the following is correct ?

A. $$x = 0$$
B. $$x = 1$$
C. $$x = {\log _2}5$$  
D. $$x = {\log _5}2$$
Answer :   $$x = {\log _2}5$$
Solution :
$$\eqalign{ & {\text{Let, }}{\log _{10}}2,{\log _{10}}\left( {{2^x} - 1} \right){\text{and }}{\log _{10}}\left( {{2^x} + 3} \right){\text{are in A}}{\text{.P}}{\text{.}} \cr & \therefore 2{\log _{10}}\left( {{2^x} - 1} \right) = {\log _{10}}2 + {\log _{10}}\left( {{2^x} + 3} \right) \cr & \Rightarrow {\log _{10}}{\left( {{2^x} - 1} \right)^2} = {\log _{10}}2\left( {{2^x} + 3} \right) \cr & \Rightarrow {2^{2x}} + 1 - {2^{x + 1}} = {2.2^x} + 6 \cr & \Rightarrow {a^2} + 1 - 2a = 2a + 6\,\,\,\,{\text{where }}a = {2^x}. \cr & \Rightarrow {a^2} - 4a - 5 = 0 \cr & \Rightarrow a = 5\,\,{\text{or }}a = - 1 \cr & {2^x} = 5 \cr & \Rightarrow \log 2 = \log 5 \cr & \Rightarrow x = \frac{{\log 5}}{{\log 2}} \cr & \Rightarrow x = {\log _2}5 \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section