Question

If $$\left| z \right| = 1\,{\text{and }}z \ne \pm 1,$$    then all the values of $$\frac{z}{{1 - {z^2}}}$$  lie on

A. a line not passing through the origin
B. $$\left| z \right| = \sqrt 2 $$
C. the $$x$$ - axis
D. the $$y$$ - axis  
Answer :   the $$y$$ - axis
Solution :
$${\text{Given }}\left| z \right| = 1\,{\text{and }}z \ne \pm 1$$
To find locus of $$\omega = \frac{z}{{1 - {z^2}}}$$
We have $$\omega = \frac{z}{{1 - {z^2}}} = \frac{z}{{z\overline z - {z^2}}}\,\,\,\,\,\,\,\,\left[ {\because \,\left| z \right| = 1\,\, \Rightarrow {{\left| z \right|}^2} = z\overline z = 1} \right]$$
$$\,\,\,\,\, = \frac{1}{{\overline z - z}}$$
= purely imaginary number
∴ $$\omega $$ must lie on $$y$$ - axis.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section