Question

If $$\int {\frac{1}{{1 + \sin \,x}}dx = \tan \left( {\frac{x}{2} + a} \right) + b} ,$$        then :

A. $$a = - \frac{\pi }{4},\,\,b\, \in {\bf{R}}$$  
B. $$a = \frac{\pi }{4},\,b\,\, \in {\bf{R}}$$
C. $$a = \frac{{5\pi }}{4},\,\,b\, \in {\bf{R}}$$
D. None of these
Answer :   $$a = - \frac{\pi }{4},\,\,b\, \in {\bf{R}}$$
Solution :
$$\eqalign{ & {\text{Let,}} \cr & I = \int {\frac{1}{{1 + \sin \,x}}dx} \cr & \,\,\,\,\, = \int {\frac{{dx}}{{1 + \frac{{2\,\tan \frac{x}{2}}}{{1 + {{\tan }^2}\frac{x}{2}}}}}} \cr & \,\,\,\,\, = \int {\frac{{\left( {1 + {{\tan }^2}\frac{x}{2}} \right)dx}}{{1 + {{\tan }^2}\frac{x}{2} + 2\,\tan \,\frac{x}{2}}}} \cr & \,\,\,\,\, = \int {\frac{{{{\sec }^2}\frac{x}{2}dx}}{{1 + {{\tan }^2}\frac{x}{2} + 2\,\tan \,\frac{x}{2}}}} \cr & {\text{Substitute,}}\, \cr & \tan \frac{x}{2} = t \cr & \Rightarrow \frac{1}{2}{\sec ^2}\frac{x}{2}dx = dt \cr & \Rightarrow {\sec ^2}\frac{x}{2}dx = 2\,dt \cr & {\text{Then}} \cr & I = \int {\frac{{2dt}}{{1 + {t^2} + 2t}}} \cr & \,\,\,\,\, = 2\int {\frac{{dt}}{{{{\left( {1 + t} \right)}^2}}}} \cr & \,\,\,\,\, = 2\frac{{ - 1}}{{\left( {1 + t} \right)}} + C \cr & \,\,\,\,\, = \frac{{ - 2}}{{1 + \tan \frac{x}{2}}} + c \cr & \,\,\,\,\, = 1 - \frac{2}{{1 + \tan \frac{x}{2}}} + \left( {c - 1} \right) \cr & \,\,\,\,\, = \frac{{\tan \frac{x}{2} - 1}}{{\tan \frac{x}{2} + 1}} + b \cr & {\text{Where }}b = c - 1,{\text{ a new constant}} \cr & \,\,\,\,\, = - \frac{{1 - \tan \frac{x}{2}}}{{1 + \tan \frac{x}{2}}} + b \cr & \,\,\,\,\, = - \tan \left( {\frac{\pi }{4} - \frac{x}{2}} \right) + b \cr & \,\,\,\,\, = \tan \left( {\frac{x}{2} - \frac{\pi }{4}} \right) + b \cr & {\text{Clearly,}}\,a = - \frac{\pi }{4}{\text{ and }}b\, \in {\bf{R}} \cr} $$

Releted MCQ Question on
Calculus >> Indefinite Integration

Releted Question 1

The value of the integral $$\int {\frac{{{{\cos }^3}x + {{\cos }^5}x}}{{{{\sin }^2}x + {{\sin }^4}x}}dx} $$    is-

A. $$\sin \,x - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
B. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + c$$
C. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
D. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + 5\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
Releted Question 2

If $$\int_{\sin \,x}^1 {{t^2}f\left( t \right)dt = 1 - \sin \,x} ,$$      then $$f\left( {\frac{1}{{\sqrt 3 }}} \right)$$   is-

A. $$\frac{1}{3}$$
B. $${\frac{1}{{\sqrt 3 }}}$$
C. $$3$$
D. $$\sqrt 3 $$
Releted Question 3

Solve this $$\int {\frac{{{x^2} - 1}}{{{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx} = ?$$

A. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^2}}} + C$$
B. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^3}}} + C$$
C. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{x} + C$$
D. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{2{x^2}}} + C$$
Releted Question 4

Let $$I = \int {\frac{{{e^x}}}{{{e^{4x}} + {e^{2x}} + 1}}dx,\,J = \int {\frac{{{e^{ - \,x}}}}{{{e^{ - \,4x}} + {e^{ - \,2x}} + 1}}dx.} } $$
Then for an arbitrary constant $$C,$$ the value of $$J-I$$  equals-

A. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} - {e^{2x}} + 1}}{{{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} + {e^x} + 1}}{{{e^{2x}} - {e^x} + 1}}} \right) + C$$
C. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} - {e^x} + 1}}{{{e^{2x}} + {e^x} + 1}}} \right) + C$$
D. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} + {e^{2x}} + 1}}{{{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$

Practice More Releted MCQ Question on
Indefinite Integration


Practice More MCQ Question on Maths Section