Question

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12  
D. 24
Answer :   12
Solution :
We have $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n}$$
$$\eqalign{ & \left[ {1 + mx + \frac{{m\left( {m - 1} \right)}}{{2!}}{x^2} + .....} \right]\left[ {1 - nx + \frac{{n\left( {n - 1} \right)}}{{2!}}{x^2} - .....} \right] \cr & = 1 + \left( {m - n} \right)x + \left[ {\frac{{m\left( {m - 1} \right)}}{2} + \frac{{n\left( {n - 1} \right)}}{2} - mn} \right]{x^2} + ..... \cr & {\text{Given, }}m - n = 3\,\,\,\,\,\,\,\,.....\left( 1 \right) \cr & {\text{and }}\frac{1}{2}m\left( {m - 1} \right) + \frac{1}{2}n\left( {n - 1} \right) - mn = - 6 \cr & \Rightarrow \,\,{m^2} + {n^2} - 2mn - \left( {m + n} \right) = - 12 \cr & \Rightarrow \,\,{\left( {m - n} \right)^2} - \left( {m + n} \right) = - 12 \cr & \Rightarrow \,\,m + n = 9 + 12 = 21\,\,\,\,\,\,\,\,.....\left( 2 \right) \cr} $$
From (1) and (2), we get
$$m = 12$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section