Question

If $${I_1} = \int\limits_0^{\frac{\pi }{2}} {\cos \left( {\sin \,x} \right)dx\,;\,} {I_2} = \int\limits_0^{\frac{\pi }{2}} {\sin \left( {\cos \,x} \right)dx} $$         and $${I_3} = \int\limits_0^{\frac{\pi }{2}} {\cos \,x\,dx,} $$    then :

A. $${I_1} > {I_3} > {I_2}$$  
B. $${I_3} > {I_1} > {I_2}$$
C. $${I_1} > {I_2} > {I_3}$$
D. $${I_3} > {I_2} > {I_1}$$
Answer :   $${I_1} > {I_3} > {I_2}$$
Solution :
$$\eqalign{ & {I_1} = \int\limits_0^{\frac{\pi }{2}} {\cos \left( {\sin \,x} \right)dx} \cr & {I_2} = \int\limits_0^{\frac{\pi }{2}} {\sin \left( {\cos \,x} \right)dx} \cr & {I_3} = \int\limits_0^{\frac{\pi }{2}} {\cos \,x\,dx} \cr} $$
Definite Integration mcq solution image
$$\eqalign{ & {\text{Let }}{f_1}\left( x \right) = \cos \left( {\sin \,x} \right),\,{f_2}\left( x \right) = \sin \left( {\cos \,x} \right),\,{f_3}\left( x \right) = \cos \,x \cr & {\text{If }}x > 0,{\text{ then }}\sin x < x \cr & \Rightarrow {\text{ for }}0 < x < \frac{\pi }{2}{\text{,}}\,{\text{sin}}\left( {\cos \,x} \right) < \cos \,x \cr & {\text{Also, }}0 < x < \frac{\pi }{2}{\text{ then }}\sin \,x < x \cr & \Rightarrow \cos \left( {\sin \,x} \right) > \cos \,x \cr & \therefore \,\cos \left( {\sin \,x} \right) > \cos \,x > \sin \left( {\cos \,x} \right){\text{ if }}0 < x < \frac{\pi }{2} \cr & \therefore \,{I_1} > {I_3} > {I_2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section