Question

If $$I = \int {\frac{1}{{2p}}\sqrt {\frac{{p - 1}}{{p + 1}}} dp} = f\left( p \right) + c,$$       then $$f\left( p \right)$$  is equal to :

A. $$\frac{1}{2}\ell n\left[ {p - \sqrt {{p^2} - 1} } \right]$$
B. $$\frac{1}{2}{\cos ^{ - 1}}p + \frac{1}{2}{\sec ^{ - 1}}p$$
C. $$\ell n\sqrt {p + \sqrt {{p^2} - 1} } - \frac{1}{2}{\sec ^{ - 1}}p$$  
D. None of the above
Answer :   $$\ell n\sqrt {p + \sqrt {{p^2} - 1} } - \frac{1}{2}{\sec ^{ - 1}}p$$
Solution :
$$\eqalign{ & I = \int {\frac{1}{{2p}}\sqrt {\frac{{p - 1}}{{p + 1}}} dp} \cr & = \frac{1}{2}\int {\frac{{p - 1}}{{{p\sqrt {\left( {p + 1} \right)\left( {p - 1} \right)} }}} dp} \cr & = \frac{1}{2}\int {\frac{{pdp}}{{p\sqrt {{p^2} - 1} }} - \frac{1}{2}\int {\frac{{dp}}{{p\sqrt {{p^2} - 1} }}} } \cr & = \frac{1}{2}\int {\frac{{dp}}{{\sqrt {{p^2} - 1} }} - \frac{1}{2}\int {\frac{{dp}}{{p\sqrt {{p^2} - 1} }}} } \cr & = \frac{1}{2}{\log _e}\left( {p + \sqrt {{p^2} - 1} } \right) - \frac{1}{2}{\sec ^{ - 1}}p \cr & \Rightarrow f\left( p \right) = \log \sqrt {p + \sqrt {{p^2} - 1} } - \frac{1}{2}{\sec ^{ - 1}}p \cr} $$

Releted MCQ Question on
Calculus >> Indefinite Integration

Releted Question 1

The value of the integral $$\int {\frac{{{{\cos }^3}x + {{\cos }^5}x}}{{{{\sin }^2}x + {{\sin }^4}x}}dx} $$    is-

A. $$\sin \,x - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
B. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + c$$
C. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
D. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + 5\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
Releted Question 2

If $$\int_{\sin \,x}^1 {{t^2}f\left( t \right)dt = 1 - \sin \,x} ,$$      then $$f\left( {\frac{1}{{\sqrt 3 }}} \right)$$   is-

A. $$\frac{1}{3}$$
B. $${\frac{1}{{\sqrt 3 }}}$$
C. $$3$$
D. $$\sqrt 3 $$
Releted Question 3

Solve this $$\int {\frac{{{x^2} - 1}}{{{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx} = ?$$

A. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^2}}} + C$$
B. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^3}}} + C$$
C. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{x} + C$$
D. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{2{x^2}}} + C$$
Releted Question 4

Let $$I = \int {\frac{{{e^x}}}{{{e^{4x}} + {e^{2x}} + 1}}dx,\,J = \int {\frac{{{e^{ - \,x}}}}{{{e^{ - \,4x}} + {e^{ - \,2x}} + 1}}dx.} } $$
Then for an arbitrary constant $$C,$$ the value of $$J-I$$  equals-

A. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} - {e^{2x}} + 1}}{{{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} + {e^x} + 1}}{{{e^{2x}} - {e^x} + 1}}} \right) + C$$
C. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} - {e^x} + 1}}{{{e^{2x}} + {e^x} + 1}}} \right) + C$$
D. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} + {e^{2x}} + 1}}{{{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$

Practice More Releted MCQ Question on
Indefinite Integration


Practice More MCQ Question on Maths Section