Question

If $$g\left( x \right) = {x^2} + x - 2$$    and $$\frac{1}{2}\left( {gof} \right)\left( x \right) = 2{x^2} - 5x + 2,$$      then $$f\left( x \right)$$  is equal to :

A. $$2x - 3$$  
B. $$2x + 3$$
C. $$2{x^2} + 3x + 1$$
D. $$2{x^2} - 3x - 1$$
Answer :   $$2x - 3$$
Solution :
$$\eqalign{ & g\left( x \right) = {x^2} + x - 2{\text{ and }}\frac{1}{2}\left( {gof} \right)\left( x \right) = 2{x^2} - 5x + 2 \cr & \Rightarrow g\left( {f\left( x \right)} \right) = 4{x^2} - 10x + 4 \cr & \Rightarrow {\left( {f\left( x \right)} \right)^2} + f\left( x \right) - 2 = 4{x^2} - 10x + 4 \cr & \Rightarrow {\left( {f\left( x \right)} \right)^2} + f\left( x \right) - \left( {4{x^2} - 10x + 6} \right) = 0 \cr & \Rightarrow f\left( x \right) = \frac{{ - 1 \pm \sqrt {16{x^2} - 40x + 25} }}{2} \cr & \Rightarrow f\left( x \right) = \frac{{ - 1 \pm \left( {4x - 5} \right)}}{2} \cr & \Rightarrow f\left( x \right) = \frac{{4x - 6}}{2}{\text{ }}\,{\text{or}}\,{\text{ }}\frac{{ - 4x + 4}}{2} \cr & \Rightarrow f\left( x \right) = 2x - 3{\text{ or }} - 2x + 2 \cr & {\text{Hence, }}f\left( x \right) = 2x - 3 \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section