Question

If $$F\left( x \right) = {\left( {f\left( {\frac{x}{2}} \right)} \right)^2} + {\left( {g\left( {\frac{x}{2}} \right)} \right)^2}$$     where $$f''\left( x \right) = - f\left( x \right)$$   and $$g\left( x \right) = f'\left( x \right)$$   and given that $$F\left( 5 \right) = 5,$$   then $$F\left( {10} \right)$$  is equal to

A. 5  
B. 10
C. 0
D. 15
Answer :   5
Solution :
$$\eqalign{ & F\left( x \right) = {\left( {f\left( {\frac{x}{2}} \right)} \right)^2} + {\left( {g\left( {\frac{x}{2}} \right)} \right)^2} \cr & \Rightarrow F'\left( x \right) = 2f\left( {\frac{x}{2}} \right).f'\left( {\frac{x}{2}} \right).\frac{1}{2} + 2g\left( {\frac{x}{2}} \right).g'\left( {\frac{x}{2}} \right).\frac{1}{2} \cr & = f\left( {\frac{x}{2}} \right).f'\left( {\frac{x}{2}} \right) + f'\left( {\frac{x}{2}} \right).f''\left( {\frac{x}{2}} \right)\,\left[ {\because g\left( x \right) = f'\left( x \right) \Rightarrow g'\left( x \right) = f''\left( x \right)} \right] \cr & = f\left( {\frac{x}{2}} \right).f'\left( {\frac{x}{2}} \right) - f'\left( {\frac{x}{2}} \right)f\left( {\frac{x}{2}} \right) \cr & = 0\,\,\left[ {\because f''\left( x \right) = - f\left( x \right)} \right] \cr & \Rightarrow F\left( x \right)\,{\text{is}}\,{\text{a}}\,{\text{constant function}}{\text{.}} \cr & \therefore F\left( x \right) = F\left( 5 \right) = 5\forall x \in R \Rightarrow F\left( {10} \right) = 5 \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section