Question

If \[f\left( x \right) = \left\{ \begin{array}{l} x{e^{ - \left( {\frac{1}{{\left| x \right|}} + \frac{1}{x}} \right)}},\,\,x \ne 0\\ 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\]       Then $$f\left( x \right)$$  is-

A. discontinuous every where
B. continuous as well as differentiable for all $$x$$
C. continuous for all $$x$$ but not differentiable at $$x =0$$  
D. neither differentiable nor continuous at $$x =0$$
Answer :   continuous for all $$x$$ but not differentiable at $$x =0$$
Solution :
$$\eqalign{ & f\left( 0 \right) = 0\,;\,\,f\left( x \right) = x{e^{ - \left( {\frac{1}{{\left| x \right|}} + \frac{1}{x}} \right)}} \cr & {\text{R}}{\text{.H}}{\text{.L}}{\text{. }}\mathop {\lim }\limits_{h \to 0} \left( {0 + h} \right){e^{ - \frac{2}{h}}} = \mathop {\lim }\limits_{h \to 0} \frac{h}{{{e^{\frac{2}{h}}}}} = 0 \cr & {\text{L}}{\text{.H}}{\text{.L}}{\text{. }}\mathop {\lim }\limits_{h \to 0} \left( {0 - h} \right){e^{ - \left( {\frac{1}{h}\, - \,\frac{1}{h}} \right)}} = 0 \cr} $$
Therefore, $$f\left( x \right)$$  is continuous.
$$\eqalign{ & {\text{R}}{\text{.H}}{\text{.D}}{\text{. }} = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {0 + h} \right){e^{ - \left( {\frac{1}{h}\, + \frac{1}{h}} \right)}} - 0}}{h} = 0 \cr & {\text{L}}{\text{.H}}{\text{.D}}{\text{. }} = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {0 - h} \right){e^{ - \left( {\frac{1}{h}\, - \,\frac{1}{h}} \right)}} - 0}}{{ - h}} = 1 \cr} $$
Therefore, L.H.D. $$ \ne $$ R.H.D.
$$f\left( x \right)$$  is not differentiable at $$x =0.$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section