Question
If \[f\left( x \right) = \left\{ \begin{array}{l}
\frac{{x\,\log \,\cos \,x}}{{\log \left( {1 + {x^2}} \right)}},\,\,\,\,\,x \ne 0\\
\,\,\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0
\end{array} \right.\] then $$f\left( x \right)$$ is :
A.
continuous as well as differentiable at $$x = 0$$
B.
continuous but not differentiable at $$x = 0$$
C.
differentiable but not continuous at $$x = 0$$
D.
neither continuous nor differentiable at $$x = 0$$
Answer :
continuous as well as differentiable at $$x = 0$$
Solution :
We have,
$$\eqalign{
& {\text{L}}f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{ - h\,\log \,\cos \,h}}{{ - h\,\log \left( {1 + {h^2}} \right)}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\log \,\cos \,h}}{{\log \left( {1 + {h^2}} \right)}}\,\,\,\,\,\,\,\,\left( {\frac{0}{0}{\text{form}}} \right) \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{ - \tan \,h}}{{\frac{{2h}}{{\left( {1 + {h^2}} \right)}}}} \cr
& = - \frac{1}{2} \cr
& {\text{R}}f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{h\,\log \,\cos \,h}}{{h\,\log \left( {1 + {h^2}} \right)}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\log \,\cos \,h}}{{\log \left( {1 + {h^2}} \right)}}\,\,\,\,\,\,\,\,\left( {\frac{0}{0}{\text{form}}} \right) \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{ - \tan \,h}}{{\frac{{2h}}{{\left( {1 + {h^2}} \right)}}}} \cr
& = \frac{{ - 1}}{2} \cr} $$
Since $${\text{L}}f'\left( 0 \right){\text{ = R}}f'\left( 0 \right),$$ therefore $$f\left( x \right)$$ is differentiable at $$x = 0.$$
Since differentiability $$ \Rightarrow $$ continutity, therefore $$f\left( x \right)$$ iscontinuous at $$x = 0.$$