Question

If $$f\left( x \right) = \int\limits_{{x^2}}^{{x^2} + 1} {{e^{ - {t^2}}}} dt,$$     then$$f\left( x \right)$$  increases in-

A. $$\left( { - 2,\,2} \right)$$
B. no value of $$x$$
C. $$\left( {0,\,\infty } \right)$$
D. $$\left( { - \infty ,\,0} \right)$$  
Answer :   $$\left( { - \infty ,\,0} \right)$$
Solution :
We have $$f\left( x \right) = \int\limits_{{x^2}}^{{x^2} + 1} {{e^{ - {t^2}}}} dt$$
Then $$f'\left( x \right) = {e^{ - {{\left( {{x^2} + 1} \right)}^2}}}.2x - {e^{ - {x^4}}}.2x$$
[Using Leibnitz theorem, ]
$$\eqalign{ & \frac{d}{{dx}}\int\limits_{\phi \left( x \right)}^{\psi \left( x \right)} {f\left( t \right)dt} \cr & = f\left[ {\psi \left( x \right)} \right].\psi '\left( x \right) - f\left[ {\phi \left( x \right)} \right].\phi '\left( x \right) \cr & = 2x\left[ {{e^{ - {{\left( {{x^2} + 1} \right)}^2}}} - {e^{ - {x^4}}}} \right]\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because {\left( {{x^2} + 1} \right)^2} > {x^4} \cr & \Rightarrow {e^{ + {{\left( {{x^2} + 1} \right)}^2}}} > {e^{{x^4}}} \Rightarrow {e^{ - {{\left( {{x^2} + 1} \right)}^2}}} < {e^{ - {x^4}}} \cr & \therefore {e^{ - {{\left( {{x^2} + 1} \right)}^2}}} - {e^{ - {x^4}}} < 0 \cr & \therefore f'\left( x \right) > 0,\,\forall \,x < 0 \cr} $$
$$\therefore f\left( x \right)$$   increases when $$x<0$$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section