If \[f\left( x \right) = \left\{ \begin{array}{l}
\frac{{{{\left[ x \right]}^2} + \sin \left[ x \right]}}{{\left[ x \right]}}\,{\rm{ for }}\left[ x \right] \ne 0\\
\,\,\,\,\,\,\,\,\,0{\rm{ }}\,\,\,\,\,\,\,\,\,\,{\rm{ for }}\left[ x \right] = 0
\end{array} \right.,{\rm{where }}\left[ x \right]\] denotes the greatest integer less than or equal to $$x,$$ then $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$ equals :
A.
$$1$$
B.
$$0$$
C.
$$ - 1$$
D.
none of these
Answer :
none of these
Solution :
$$\eqalign{
& {\text{As }}x \to 0 - \left( {{\text{i}}{\text{.e}}{\text{., approaches 0 from the left}}} \right),\,\left[ x \right] = - 1 \cr
& \therefore \,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{1 + \sin \left( { - 1} \right)}}{{ - 1}} = - 1 + \sin \,1 \cr
& {\text{Whereas, if }}x \to {0^ + }{\text{ we get }}\left[ x \right] = 0 \cr
& \therefore \,f\left( x \right) = 0\, \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 0 \cr
& {\text{Thus, }}\mathop {\lim }\limits_{x \to 0} f\left( x \right){\text{ does not exist}}{\text{.}} \cr} $$
Releted MCQ Question on Calculus >> Limits
Releted Question 1
lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$ then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$ is-
If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$ then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$ has the value-
If $$\eqalign{
& f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$ equals