Question

If $$f\left( x \right) = \frac{{\sin 3x}}{{\sin x}},\,$$   where $$x \ne n\pi ,$$  then the range of values of $$f\left( x \right)$$  for real values of $$x$$ is

A. $$\left[ { - 1,3} \right]$$
B. $$\left( { - \infty , - 1} \right]$$
C. $$\left( {3, + \infty } \right)$$
D. $$\left[ { - 1,3} \right)$$  
Answer :   $$\left[ { - 1,3} \right)$$
Solution :
$$\eqalign{ & 3 - 4{\sin ^2}x = y \cr & \therefore \,\,{\sin ^2}x = \frac{{3 - y}}{4}.\,{\text{But }}0 < {\sin ^2}x \leqslant 1\,\,\,\,\,\left( {\because \,\,\sin x = 0\,\,\,\, \Rightarrow \,x = n\pi } \right). \cr & \therefore \,\,0 < \frac{{3 - y}}{4} \leqslant 1\,\,\,{\text{or, }}0 < 3 - y \leqslant 4. \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section