Question

If $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {\frac{{\sqrt 3 }}{2}x - \frac{1}{2}\sqrt {1 - {x^2}} } \right\}, - \frac{1}{2} \leqslant x \leqslant 1,$$          then $$f\left( x \right)$$  is equal to

A. $${\sin^{ - 1}}\frac{1}{2} - {\sin ^{ - 1}}x$$
B. $${\sin ^{ - 1}}x - \frac{\pi }{6}$$  
C. $${\sin ^{ - 1}}x + \frac{\pi }{6}$$
D. None of these
Answer :   $${\sin ^{ - 1}}x - \frac{\pi }{6}$$
Solution :
Let $$x = \sin \theta .$$   Then $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {\sin \left( {\theta - \frac{\pi }{6}} \right)} \right\}.$$
$$\eqalign{ & - \frac{1}{2} \leqslant x \leqslant 1 \cr & \Rightarrow \,\, - \frac{1}{2} \leqslant \sin \theta \leqslant 1 \cr & \Rightarrow \,\, - \frac{\pi }{6} \leqslant \theta \leqslant \frac{\pi }{2}. \cr} $$
So, $$\theta - \frac{\pi }{6}$$  is in the fourth or the first quadrant. Hence, $$f\left( x \right) = \theta - \frac{\pi }{6}.$$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section