Question

If $$f\left( x \right) = {\log _x}\left( {\ln x} \right),$$     then at $$x = e,\,f'\left( x \right)$$    equals :

A. $$0$$
B. $$1$$
C. $$e$$
D. $$\frac{1}{e}$$  
Answer :   $$\frac{1}{e}$$
Solution :
$$\eqalign{ & \because \,\ln \,x = {\log _e}x,\,\,{\text{so}} \cr & f\left( x \right) = {\log _x}\left( {{{\log }_e}x} \right) = \frac{{\log \left( {\log \,x} \right)}}{{\log \,x}} \cr & \Rightarrow f'\left( x \right) = \frac{{\log \,x\left( {\frac{1}{{x\,\log \,x}}} \right) - \log \left( {\log \,x} \right).\frac{1}{x}}}{{{{\left( {\log \,x} \right)}^2}}} \cr & \therefore \,f'\left( e \right) = \frac{{\frac{1}{e} - 0}}{{{{\left( 1 \right)}^2}}} = \frac{1}{e} \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section