Question

If $$f\left( x \right) = \int_{ - 1}^1 {\frac{{\sin \,x}}{{1 + {t^2}}}dt} $$     then $$f'\left( {\frac{\pi }{3}} \right)$$  is :

A. nonexistent
B. $$\frac{\pi }{4}$$  
C. $$\frac{{\pi \sqrt 3 }}{4}$$
D. none of these
Answer :   $$\frac{\pi }{4}$$
Solution :
$$\eqalign{ & f\left( x \right) = \sin \,x.\int_{ - 1}^1 {\frac{{dt}}{{1 + {t^2}}}} \cr & = \sin \,x.\left[ {{{\tan }^{ - 1}}t} \right]_{ - 1}^1 \cr & = \sin \,x\left\{ {\frac{\pi }{4} - \left( { - \frac{\pi }{4}} \right)} \right\} \cr & = \frac{\pi }{2}\sin \,x \cr & \therefore f'\left( x \right) = \frac{\pi }{2}\cos \,x \cr & \therefore f'\left( {\frac{\pi }{3}} \right) = \frac{\pi }{2}.\cos \,\frac{\pi }{3} = \frac{\pi }{4} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section