Question

If $$f\left( x \right),g\left( x \right)$$   and $$h\left( x \right)$$  are three polynomials of degree 2 and \[\Delta \left( x \right) = \left| {\begin{array}{*{20}{c}} {f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\ {f'\left( x \right)}&{g'\left( x \right)}&{h'\left( x \right)}\\ {f''\left( x \right)}&{g''\left( x \right)}&{h''\left( x \right)} \end{array}} \right|,\]       then $$\Delta \left( x \right)$$  is a polynomial of degree

A. 2
B. 3
C. at most 2  
D. at most 3
Answer :   at most 2
Solution :
Let, $$f\left( x \right) = {a_0}{x^2} + {a_1}x + {a_2}$$
$$\eqalign{ & g\left( x \right) = {b_0}{x^2} + {b_1}x + {b_2} \cr & h\left( x \right) = {c_0}{x^2} + {c_1}x + {c_2} \cr} $$
Then, \[\Delta \left( x \right) = \left| {\begin{array}{*{20}{c}} {f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\ {2{a_0}x + {a_1}}&{2{b_0}x + {b_1}}&{2{c_0}x + {c_1}}\\ {2{a_0}}&{2{b_0}}&{2{c_0}} \end{array}} \right|\]
\[ = x\left| {\begin{array}{*{20}{c}} {f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\ {2{a_0}}&{2{b_0}}&{2{c_0}}\\ {2{a_0}}&{2{b_0}}&{2{c_0}} \end{array}} \right| + \left| {\begin{array}{*{20}{c}} {f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {2{a_0}}&{2{b_0}}&{2{c_0}} \end{array}} \right|\]
\[ = 0 + 2\left| {\begin{array}{*{20}{c}} {f\left( x \right)}&{g\left( x \right)}&{h\left( x \right)}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_0}}&{{b_0}}&{{c_0}} \end{array}} \right|\]
$$ = 2\left[ {\left( {{b_1}{c_0} - {b_0}{c_1}} \right]f\left( x \right) - \left( {{a_1}{c_0} - {a_0}{c_1}} \right)g\left( x \right) + \left( {{a_1}{b_0} - {a_0}{b_1}} \right)h\left( x \right)} \right]$$
Hence degree of $$\Delta \left( x \right) \leqslant 2.$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section