If $$f\left( x \right) = \frac{{{e^x}}}{{1 + {e^x}}},\,{I_1} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {xg\left\{ {x\left( {1 - x} \right)} \right\}dx} $$ and $${I_2} = \int\limits_{f\left( { - a} \right)}^{f\left( a \right)} {g\left\{ {x\left( {1 - x} \right)} \right\}dx,} $$ then the value of $$\frac{{{I_2}}}{{{I_1}}}$$ is :