Question

If \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} {1 + {{\sin }^2}x}&{{{\cos }^2}x}&{4\sin 2x}\\ {{{\sin }^2}x}&{1 + {{\cos }^2}x}&{4\sin 2x}\\ {{{\sin }^2}x}&{{{\cos }^2}x}&{1 + 4\sin 2x} \end{array}} \right|\]         What is the maximum value of $$f\left( x \right)\,?$$

A. 2
B. 4
C. 6  
D. 8
Answer :   6
Solution :
\[f\left( x \right) = \left| {\begin{array}{*{20}{c}} {1 + {{\sin }^2}x}&{{{\cos }^2}x}&{4\sin 2x}\\ {{{\sin }^2}x}&{1 + {{\cos }^2}x}&{4\sin 2x}\\ {{{\sin }^2}x}&{{{\cos }^2}x}&{1 + 4\sin 2x} \end{array}} \right|\]
$${\text{Applying }}{C_1} \to {C_1} + {C_2}$$
\[ = \left| {\begin{array}{*{20}{c}} 2&{{{\cos }^2}\theta }&{4\sin 2x}\\ 2&{1 + {{\cos }^2}\theta }&{4\sin 2x}\\ 1&{{{\cos }^2}\theta }&{1 + 4\sin 2x} \end{array}} \right|\]
$$\left( {{\text{Applying }}{R_2} \to {R_2} - {R_1}{\text{ and }}{R_3} \to {R_3} - {R_1}} \right)$$
\[ = \left| {\begin{array}{*{20}{c}} 2&{{{\cos }^2}\theta }&{4\sin 2x}\\ 0&1&0\\ { - 1}&0&1 \end{array}} \right|\]
$$f\left( x \right) = 2 + 4\sin 2x$$
$$\therefore - 1 \leqslant \sin 2x \leqslant 1,$$    maximum value of $$\sin 2x = 1$$
Thus, maximum value of $$f\left( x \right) = 2 + 4 = 6$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section