Question

If $$f\left( x \right) = \sqrt {3\left| x \right| - x - 2} $$     and $$g\left( x \right) = \sin \,x,$$    then domain of definition of $$fog\left( x \right)$$  is :

A. $$\left\{ {2n\pi + \frac{\pi }{2}} \right\},\,n\, \in \,I$$
B. $$\mathop \cup \limits_{n\, \in \,I} \left\{ {2n\pi + \frac{{7\pi }}{6},\,2n\pi + \frac{{11\pi }}{6}} \right\}$$
C. $$\left\{ {2n\pi + \frac{{7\pi }}{6}} \right\},\,n\, \in \,I$$
D. $$\left\{ {\left( {4m + 1} \right)\frac{\pi }{2}:m\, \in \,I} \right\}\mathop \cup \limits_{n\, \in \,I} \left[ {2n\pi + \frac{{7\pi }}{6},\,2n\pi + \frac{{11\pi }}{6}} \right]$$  
Answer :   $$\left\{ {\left( {4m + 1} \right)\frac{\pi }{2}:m\, \in \,I} \right\}\mathop \cup \limits_{n\, \in \,I} \left[ {2n\pi + \frac{{7\pi }}{6},\,2n\pi + \frac{{11\pi }}{6}} \right]$$
Solution :
For $$\left( {fog} \right)\left( x \right)$$   to exists range of $$g \subseteq $$  domain of $$f.$$
$$\eqalign{ & \therefore \,{\text{Domain of }}f \Rightarrow 3\left| x \right| - x - 2 \geqslant 0 \cr & \Rightarrow 3\left| x \right| - x \geqslant 2 \cr & {\text{When }}x \geqslant 0 \Rightarrow x \geqslant 1 \cr & {\text{When}}\,x < 0 \Rightarrow x < - \frac{1}{2} \cr & \therefore \,\sin \,x \geqslant 1{\text{ and }}\sin \,x < - \frac{1}{2}{\text{ for }}f\left\{ {g\left( x \right)} \right\}{\text{ to exists}}{\text{.}} \cr & {\text{i}}{\text{.e}}{\text{., }}\sin \,x = 1{\text{ and }} - 1 \leqslant \sin \,x < - \frac{1}{2} \cr & \therefore \,x = \left( {4m + 1} \right)\frac{\pi }{2}{\text{ and }}2n\pi + \frac{{7\pi }}{6} \leqslant x \leqslant 2n\pi + \frac{{11\pi }}{6} \cr & {\text{i}}{\text{.e}}{\text{., }}\left\{ {\left( {4m + 1} \right)\frac{\pi }{2}:m\, \in \,I} \right\}\mathop \cup \limits_{n\, \in \,I} \left[ {2n\pi + \frac{{7\pi }}{6} \leqslant x \leqslant \,2n\pi + \frac{{11\pi }}{6}} \right] \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section