Question

If $$f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{\left| x \right|}}} ,\,x \ne 0$$     and $$f\left( 0 \right) = 0$$   is :

A. continuous for all $$x$$ but not differentiable for any $$x$$
B. continuous and differentiable for any $$x$$
C. continuous for all $$x$$ and differentiable for all $$x \ne 0$$  
D. continuous and differentiable for all $$x \ne 0$$
Answer :   continuous for all $$x$$ and differentiable for all $$x \ne 0$$
Solution :
$$\eqalign{ & f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{\left| x \right|}}} ,\,x \ne 0,\,f\left( 0 \right) = 0 \cr & \therefore \,f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{{ - x}}} = \root 3 \of {{ - x^3}} = - x{\text{ if }}x < 0 \cr & \& \,f\left( x \right) = \root 3 \of {\frac{{{x^4}}}{x}} = \root 3 \of {{x^3}} = x{\text{ if }}x > 0 \cr} $$
\[f\left( x \right) = \left\{ \begin{array}{l} - x,{\rm{ \,if\, }}x < 0\\ \,\,\,\,\,0,{\rm{ \,if\, }}x = 0\\ \,\,\,\,\,x,{\rm{ \,if\, }}x > 0\,\, \end{array} \right.\]
Clearly $$f\left( x \right)$$  is continuous for all $$x$$ but not differentiable at $$x = 0$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section