Question

If $$f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$$      and $$S = \left\{ {x\,I\,R:f\left( x \right) = f\left( { - x} \right)} \right\};$$      then $$S :$$

A. contains exactly two elements.  
B. contains more than two elements.
C. is an empty set.
D. contains exactly one element.
Answer :   contains exactly two elements.
Solution :
$$\eqalign{ & f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x\,\,\,\,\,.....\left( 1 \right) \cr & f\left( {\frac{1}{x}} \right) + 2f\left( x \right) = \frac{3}{x}\,\,\,\,\,\,.....\left( 2 \right) \cr} $$
Adding (1) and (2)
$$ \Rightarrow \,\,f\left( x \right) + f\left( {\frac{1}{x}} \right) = x + \frac{1}{x}$$
Substracting (1) from (2)
$$ \Rightarrow \,\,f\left( x \right) - f\left( {\frac{1}{x}} \right) = \frac{3}{x} - 3x$$
On adding the above equations
$$\eqalign{ & \Rightarrow \,\,f\left( x \right) = \frac{2}{x} - x \cr & f\left( x \right) = f\left( { - x} \right) \cr & \Rightarrow \,\,\frac{2}{x} - x = \frac{{ - 2}}{x} + x \cr & \Rightarrow \,\,x = \frac{2}{x} \cr & {x^2} = 2\,\,\,\,{\text{or }}\,x = \sqrt 2 , - \sqrt 2 \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section