Question

If $$f\left( {x + 1} \right) + f\left( {x - 1} \right) = 2f\left( x \right)$$      and $$f\left( 0 \right) = 0$$   then $$f\left( n \right),\,n\, \in \,N,$$    is :

A. $$nf\left( 1 \right)$$  
B. $${\left\{ {f\left( 1 \right)} \right\}^n}$$
C. 0
D. none of these
Answer :   $$nf\left( 1 \right)$$
Solution :
$$ \Rightarrow f\left( {x - 1} \right) + f\left( {x + 1} \right) = 2f\left( x \right)....$$        (it is given that $${f\left( 0 \right) = 0}$$  )
$$\eqalign{ & {\text{Substituting }}x = 1,{\text{ we get}} \cr & \Rightarrow f\left( 0 \right) + f\left( 2 \right) = 2f\left( 1 \right) \cr & \Rightarrow f\left( 2 \right) = 2f\left( 1 \right)....\left( {f\left( 0 \right) = 0} \right) \cr & {\text{Substituting }}x = 2,{\text{ we get}} \cr & \Rightarrow f\left( 1 \right) + f\left( 3 \right) = 2f\left( 2 \right) \cr & \Rightarrow f\left( 1 \right) + f\left( 3 \right) = 4f\left( 1 \right)....\left( {f\left( 2 \right) = 2f\left( 1 \right)} \right) \cr & \Rightarrow f\left( 3 \right) = 3f\left( 1 \right) \cr & {\text{:}} \cr & {\text{:}} \cr & {\text{Therefore }}f\left( n \right) = n\left( {f\left( 1 \right)} \right) \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section