Question

If $$f:R \to S,$$   defined by $$f\left( x \right) = \sin \,x - \sqrt 3 \,\cos \,x + 1,$$       is onto, then the interval of $$S$$ is :

A. $$\left[ { - 1,\,3} \right]$$  
B. $$\left[ { - 1,\,1} \right]$$
C. $$\left[ {0,\,1} \right]$$
D. $$\left[ { 0,\,3} \right]$$
Answer :   $$\left[ { - 1,\,3} \right]$$
Solution :
$$\eqalign{ & f\left( x \right){\text{ is onto}}\,\,\,\therefore \,S = {\text{range of }}f\left( x \right) \cr & {\text{Now }}f\left( x \right) = \sin \,x - \sqrt 3 \,\cos \,x + 1 = 2\,\sin \,\left( {x - \frac{\pi }{3}} \right) + 1 \cr & \because \, - 1 \leqslant \sin \left( {x - \frac{\pi }{3}} \right) \leqslant 1 \cr & - 1 \leqslant 2\,\sin \left( {x - \frac{\pi }{3}} \right) + 1 \leqslant 3 \cr & \therefore \,f\left( x \right)\, \in \left[ { - 1,\,3} \right] = S\, \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section