Question

If $$f$$ be a function given by $$f\left( x \right) = 2{x^2} + 3x - 5.$$     Then $$f'\left( 0 \right) = mf'\left( { - 1} \right),$$     where $$m$$ is equal to :

A. $$ - 1$$
B. $$ - 2$$
C. $$ - 3$$  
D. $$ - 4$$
Answer :   $$ - 3$$
Solution :
We first find the derivatives of $$f\left( x \right)$$  at $$x = - 1$$   and at $$x = 0.$$
We have,
$$\eqalign{ & f'\left( { - 1} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( { - 1 + h} \right) - f\left( { - 1} \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {2{{\left( { - 1 + h} \right)}^2} + 3\left( { - 1 + h} \right) - 5} \right] - \left[ {2{{\left( { - 1} \right)}^2} + 3\left( { - 1} \right) - 5} \right]}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{2{h^2} - h}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \left( {2h - 1} \right) \cr & = 2\left( 0 \right) - 1 \cr & = - 1 \cr & {\text{and }}f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {2{{\left( {0 + h} \right)}^2} + 3\left( {0 + h} \right) - 5} \right] - \left[ {2{{\left( 0 \right)}^2} + 3\left( 0 \right) - 5} \right]}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{2{h^2} + 3h}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \left( {2h + 3} \right) \cr & = 2\left( 0 \right) + 3 \cr & = 3 \cr & {\text{Clearly, }}f'\left( 0 \right) = - 3f'\left( { - 1} \right) \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section