Question

If $$f$$ and $$g$$ are two functions defined as $$f\left( x \right) = x + 2,\,x \leqslant 0;\,g\left( x \right) = 3,\,x \geqslant 0,$$        then the domain of $$f + g$$  is :

A. $$\left\{ 0 \right\}$$  
B. $$\left[ {0,\,\infty } \right)$$
C. $$\left( { - \infty ,\,\infty } \right)$$
D. $$\left( { - \infty ,\,0} \right)$$
Answer :   $$\left\{ 0 \right\}$$
Solution :
$$\eqalign{ & D\left( {f + g} \right) = D\left( f \right) \cap D\left( g \right) \cr & = \left( { - \infty ,\,0} \right] \cap \left[ {0,\,\infty } \right) \cr & = \left\{ 0 \right\} \cr} $$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section