If $$f\left( {\frac{1}{x}} \right) + {x^2}f\left( x \right) = 0,\,x > 0,$$ and $$I = \int_{\frac{1}{x}}^x {f\left( z \right)dz,\,\frac{1}{2} \leqslant x \leqslant 2,} $$ then $$I$$ is :
A.
$$f\left( 2 \right) - f\left( {\frac{1}{2}} \right)$$
B.
$$f\left( {\frac{1}{2}} \right) - f\left( 2 \right)$$