Question

If $$f:\left[ {1,\infty } \right) \to \left[ {2,\infty } \right)$$     is given by $$f\left( x \right) = x + \frac{1}{x}$$   then $${f^{ - 1}}\left( x \right)$$   equals

A. $$\frac{{\left( {x + \sqrt {{x^2} - 4} } \right)}}{2}$$  
B. $$\frac{x}{{\left( {1 + {x^2}} \right)}}$$
C. $$\frac{{\left( {x - \sqrt {{x^2} - 4} } \right)}}{2}$$
D. $$1 + \sqrt {{x^2} - 4} $$
Answer :   $$\frac{{\left( {x + \sqrt {{x^2} - 4} } \right)}}{2}$$
Solution :
$$\eqalign{ & f\left( x \right) = x + \frac{1}{x} = y \Rightarrow {x^2} - yx + 1 = 0 \cr & \Rightarrow x = \frac{{y \pm \sqrt {{y^2} - 4} }}{2} \cr & \therefore x = \frac{{y + \sqrt {{y^2} - 4} }}{2}\,\,\left( {\because x \geqslant 1{\text{ and }}y \geqslant 2} \right) \cr & \therefore {f^{ - 1}}\left( x \right) = \frac{{x + \sqrt {{x^2} - 4} }}{2} \cr} $$
NOTE THIS STEP:

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section